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BY 

R O N A L D  L. LIPSMAN* 

A B S T R A C T  

Two main results are obtained. First, for any unimodular  type I almost connected 
group, it is proven that almost all of its irreducible unitary representat ions have 
global distribution characters. Second, for a certain class of semidirect products, 
these characters are computed and shown to be given by a function on an open 
dense subset,  the function however not being locally integrable on the whole 
group. 

1. Introductory comments and definitions 

It has turned out to be very important for researchers doing analysis on Lie 

groups to have an adequate knowledge of the group's distribution characters. 

Indeed, the characters have played a critical role in work on the Plancherel 

measure, the Selberg trace formula and its applications (to automorphic forms, 

the topology of manifolds, etc.), and in the study of solvability of differential 

equations on the group and its homogeneous spaces. Thus far, character theory 

has been developed only for semisimple and nilpotent groups (as well as their 

natural generalizations', reductive and solvable groups). However, more varied 

kinds of Lie groups (e.g. parabolic groups and their subgroups, real algebraic 

groups and groups of automorphisms) have been receiving an increasing amount 

of attention recently. It seems appropriate that the character theory of these 

groups should now be more thoroughly investigated. 

In this paper I will give two results in that direction. The first (Corollary 2 in 

Section 2) asserts that (at least unimodular type I) Lie groups have a sufficiently 

rich character theory. Recently, I found a similar result in [6]. However their 

method of proof is quite different from mine. Also theirs does not seem to 
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provide for the interpretation (given in Remark 4 in Section 2) of the distribution 

characters as being defined on a larger space than the usual test functions. 

The second result (Theorem 3 in Section 3) examines the extent to which 

certain non-semisimple groups can have distribution characters which are 

actually functions. Such a phenomenon has already been observed in some very 

special solvable Lie groups [1,chap. IX, w In those cases certain characters 

turn out to be distributions which are given by functions on an open dense set; 

but functions which are not locally integrable on the whole group. In particular 

the characters are not given by functions on the whole group. I shall present here 

a class of real algebraic groups which are semidirect products of semisimple and 

abelian groups, and for which the same situation ob ta ins - -namely  "most"  of 

the groups characters are given by functions (on an open dense subset) that are 

not locally integrable on the entire group. 

In a future publication I shall address myself to another topic in character 

t h e o r y - - na me ly ,  obtaining a Kirillov-type expression for characters of general 

Lie groups. Some of those results as well as the results of this paper were 

announced in a manuscript I circulated recently [15]. I should remark that 

Theorem 1 was stated somewhat differently there. As it is stated here, the 

theorem is easier to prove (specifically it avoids some technical mumbo-jumbo 

on direct integrals of unbounded operators), but just as useful. 

I now supply the terminology that will be used in this paper. G is a locally 

compact g roup - -un imodu la r  and type I in Section 2, real algebraic with a 

certain structure (to be described) in Section 3. As usual G is the set of 

(equivalence classes of) irreducible unitary representations. G is called almost 

connected if its quotient by the neutral component  is compact. If 7r ~ (~, we 

write Y(. for a Hilbert space on which ~r can be realized; S(9~.)  denotes the 

trace class operators thereon; and []. I], is the trace norm. Also I1" II, II ~ II, stand for 

the usual operator  norm and the L~ norm on the group, respectively. If G is 

almost connected, then ~ ( G )  denotes the usual space of test functions with its 

Schwartz-Bruhat topology (see [4]). A not necessarily irreducible representation 

7r of G is called traceable if for every f E @(G), rr(f) is trace class and the map 

O~:f--~TrTr(f) is continuous. The 0~ corresponding to irreducible representa- 

tions are referred to as distribution characters. G itself is called traceable if 

every ~r E (~ is traceable. Finally if G is unimodular and type I, then G (or G )  is 

called traceable a.e. if, except for a Plancherel null set, every 7r E (~ is traceable. 

2. Traceability a.e. 

We begin this section with a statement of its main results. 
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THEOREM 1. Let G be a unimodular type I connected Lie group with 

Plancherel measure tz~. Then there exists a right-invariant differential operator D 

on G which has a bounded inverse satisfying: 7r(D-1) is trace class for tzc-almost 

all 7r @ G. 

NOTE. The proof will reveal that D i is in the W*-algebra generated by left 

translations on L2(G); as such 7r(D i) is well-defined for/~c,-a.a, rr E (~ (see [13, 

w 2]). 

COROLLARY 2. Let G be a unimodular type I group which is almost connected. 

Then with the exception of a locally ~ - n u l l  set (a i.t~;-null set, if G is separable) 

the representations rr ~ G are traceable. 

We shall first derive the corollary from the theorem, and then go back and 

prove the theorem. 

PROOV ov COROLLARY 2. Here, and thoroughout the remainder of this 

section, G is assumed to be unimodular and type I. Assume at first also that G is 

a connected Lie group. By Theorem 1, we can find a right-invariant differential 

operator D and a /~c;-null set N C G such that n-(D i) is trace class for all 

n-E G - N .  Let ~r E G - N .  Then for any f E  @ ( G ) w e  have (see [13, theor. 

2.11) 

rr(f) : rr(D ' Df)  = rr(D 1)Tr(Df). 

The latter, being the product of a trace class and a bounded operator,  must be 

trace class. More precisely, we have 

iI < I1 II, II 7r(Df)II <= II 7r(D-~)I[, II Df II,. 

Therefore if f , - -~ f  in ~ ( G ) ,  then Dfo--~Df in L~(G) and so f---~trTr(f) is 

continuous. Thus the representations zr ~ G - Jf  are traceable. 

Next assume that G is a Lie group with finitely many connected components.  

Let G ~ denote the neutral component.  Then G ~ is open in G. It follows that G o 

is unimodular and that C*(G")  is naturally a C*-subalgebra of C*(G)  [17, w 1]. 

By [5,4.3.5], G O must also be type I. Therefore by the previous case, (G~ ^ is 

traceable a.e. 

Now since G ~ is of finite index in G, it must be regularly embedded.  (G~ ^ is a 

Borel G-space and there is a natural map p : ( ~ - ~ ( G ~  which associates to 

7r E (~ its quasi-orbit in (G~ ^ (or what amounts to the same thing, the spectrum 

of zr It/,). Let Jfo_C (G~ ^ be a /~c.,,-null set, off of which the irreducible unitary 

representations of G ~ are traceable. Clearly 
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2to = G .  ?r = {g . y : g E G ,  y~2r 

is a G-invariant,/a.~,,-null set in (G~ ^. Set N = p-~(N,I). By [11, theor. 10.2], N is 

a tx6-null set in (~. 

Now let ~- E 0 - N. Then ~r I~" is a finite direct sum of traceable representa- 

tions. Hence it is a traceable representation of G ~ Next let {g~}7'=~ be a set of 

representatives for the left cosets of G '1 in G. Then for f E  @(G), we have 

w ( f ) =  fo f(g)rr(g)dg = ,=,2 f,~,, f(g~g ~ ~ ~ 

Therefore  ~r(f) is trace class. To show that f - -*Tr~-(f )  is actually continuous 

requires a little extra reasoning. It follows from our argument in the connected 

case that: for any ~- E (~ - ?r there exists a differential operator  D '1 on G" and a 

constant C,, (C= depends on 7r while D ~ does not), such that 

II o-(h)ll, = C~ II O~ I1,, ~ = ~-to% h e ~ (a~ 

Applying this inequality to the functions f , (g ' l )=/(g ,  gO), we see that 

II ~-(f)ll, ~ ~ c~ II O~ II1. 
i = l  

It follows from this equation that ~- is traceable. 

Finally assume only that G is almost connected. We invoke the results of [12] 

G is an inverse limit of Lie groups G, (each having at most finitely man 3 

connected components); each G, is unimodular and type l; and ((~,p.c) is 

direct limit of the (0~, p.a,). For each i, the set N, C O~ that fails to be traceable i,. 

a p.c,-null set. It's rather simple (using [12, w 5]) to check that X = U J ~  is 

locally ix6-null set (actually null if the index set is countable), off of which th~ 

irreducible representations of G are traceable. This completes the proof o 

Corollary 2. 

We turn now to Theorem 1. The idea of the proof is basically to re-adapt th, 

beautiful results in Stinesprings' paper [18, theors. 1 and 3] to fit the formulatiol 

of non-abelian Fourier analysis found in [13]. The details follow. 

P~OOF oFTHEOREM 1. Let b be the right-invariant differential operator  on ( 

given by A = X ~ + . . .  + X2,, where X , , . . . , X ,  is a basis for g. Then, f o r  

sufficiently large positive integer r (e.g. r > (1/2)dim G will do), Stinesprin 
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shows (in [18]) that D = ( l - A )  r is an elliptic differential operator on G 

satisfying: 

i) (Df, f)>=[[fll~, f E D ( G ) ;  
ii) D 1 has a bounded self-adjoint extension on LffG) (also denoted D -~) 

which commutes with right translations; 

iii) there exists a continuous, square-integrable, positive-definite function 

on G such that D -~ agrees with left convolution by ~. 

Thus, in the notation of [13], ~ E LffG) D P(G). By Godement 's  factorization 

theorem [5, 13.8.6], there exists ~b @ LffG) such that ~ = ~*  ~. Reasoning 

exactly as in [13, corGI. 4.3], we conclude that ~ E L~((~). Once again using the 

notation of [13], we then have 

D l :  ~ ~:~ ~'(D ' ) @ l . d ~ o ( ~ ' )  
J 4  

and 
- o  

Since 4 E L~((~), it follows that with the possible exception of a/~c-null set, the 

operators 

4(~r) = vr(D-') 

must in fact be trace class. 

REMARKS. 1) Heretofore characters have been studied in any detail only on 

reductive and solvable groups. Theorem 1 and Corollary 2 show that any 
unimodular type I (almost connected) group carries many interesting distribu- 

tion characters. What do they look like.'? The next section as well as a subsequent 

paper are addressed specifically to that problem. 

2) Corollary 2 shows that unimodular type I Lie groups are "traceable a.e." 

Another result, which follows almost immediately from the Plancherel Theorem, 

is that unimodular type I groups are "CCR a.e." One wonders if the "a.e ."  refers 

to the same set in both instances. Of course traceable implies CCR, so what we 

are asking is whether the CCR representations are automatically traceable; or 

even more adventurously, whether a single CCR representation (of a connected 

Lie group say) must always be traceable. 

3) It is interesting to speculate as to whether the following strong analog of 

Corollary 2 for p-adic groups might be true: Let k be a p-adic field, G the 

k-rational points of an algebraic group def/k, and suppose G is unimodular and 

type I; then (~ is "admissible a.e." 

4) (Assume for simplicity here that G is a connected Lie group.) In the 
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definition of a traceable representation ~- we only required that f ~  Tr rr(f) be a 

continuous linear functional on ~ ( G ) .  The proof of Corollary 2 reveals that in 

general distribution characters have a stronger continuity property. Namely, we 

have the inequality 

II ~-(f)l[, =< c= ]1 Df]l,, 

for a suitable differential operator  D. This implies that the map 

f--> ~(f ) ,  ~ ( G ) - +  ~-(~=) 

is continuous when ~-(YG) has its norm topology. We see from property (i) of D 

that f llDfll, is also a norm on ~ ( G ) .  Let W be the completion of ~ ( G )  in 

this norm. Then f---~ ~'(f) extends to a norm continuous mapping from W into 

g (~G) .  The space W,.2,(G) of 2r-times continuously differentiable and integra- 

ble functions on G is contained in W. I suspect, but am not certain, that 

W = W1,2r(G) and that 11 D/Ill is a canonical Soboleff norm on that space. In any 

event I leave it to individuals especially interested in Soboleff spaces on Lie 

groups to find out for sure. But for future reference, we shall call the 

representations zr for which there is n > 0  such that 7r carries W,, , (G) 

continuously into 3-(YG) strongly traceable. My last comment is that it has been 

realized previously that @(G) is not the largest space that can support all or 

most of the distribution characters (e.g. from [13, theor. 4.1 and corol. 4.3]) we 

see it might well be some larger subspace of L , ( G ) A  A(G) .  One wonders if 

W1,2r(G) is best possible in any s e n s e - - a n d  if not, what is? 

3. Non-semis imple  characters can be functions on open sets 

Let G be a connected algebraic group with a Levi decomposition G = UH, all 

def/R. Then G = G(R) is a semidirect product G = UH, where U is a simply 

connected nilpotent normal Lie subgroup and H is a reductive Lie group. One 

knows [16] that the irreducible representations of G are of the form r = 

Ind~Mu, where M is the stability group in H of an irreducible representation 

3' E U and v C (UM)  ̂  has the property that vlu is a multiple of y. 

According to the trace formula in [11, theor. 3.2], one has (at least formally 

and assuming G and UM are unimodular) that 

0~(f) = Tr ~-(f) = fM\H TrfuM f ( h - ' u m h ) v ( u m ) d u d m d h .  

Clearly the support of 0r couldn't contain an open set unless M " =  

{h lmh : h E H, m E M} contained an open subset of H. If M is reductive, that 
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a m o u n t s  to  t h e  e q u a l i t y  r a n k  M = r a n k  H.  T h a t - - t o g e t h e r  w i t h  k n o w n  fac t s  

about characters of nilpotent g r o u p s - - l e a d s  one to suspect that for 0,~ to have a 

chance at being a function (for "gener ic"  representations It) one needs U to be 

abelian and rank M = rank H*. Having provided that motivation, we now state 

the main result of this section. 

THEOREM 3. Let G = UH, M = Hr, y E (], be as above. Assume U is abelian 

and rank M = rank H.* Then y �9 G is closed and M is reductive. Let (r E if4 be 

such that 7r = Ind ~M yar E G is strongly traceable. Denote by H'  the set of regular 

elements in H. Then on the open set UH'  the character O, is a [unction. I f  C is a 

Cartan subgroup of H contained in M, then on UC', C' = C 71 H', we have 

O (uc) = # ' I 2 s Y w,, laM.c(c .s)12 ,(u . s ) O o ( c  . s ) ,  uc t s c ' .  

Here O~ denotes the character of M corresponding to o', W,,c and WM.c are the Weyl 

groups associated to (H, C) and (M, C), and the [unctions A,,c,A~.c are the 

Jacobians that appear in the invariant integral (to be described explicitly within the 

proof). Finally, when M \ H  and cent H I M  are not compact, the [unction 0~, 

considered as a [unction on G, is not locally integrable ; so that O, is not a [unction 

on all of G. 

Paoov. First we demonstra te  a fact needed later in the proof of Lemma  4; 

namely that the group M = H~ is actually the group of rational points of a 

complex algebraic group. Indeed if 0 is identified to u * = H o m R ( u , R ) ,  

u = LA(U) ,  via y(exp Y ) =  e i*~176 T o q J  ~ u*'-~ u* = H o m c ( u , C ) ,  then M =  

M(R) where M = H,. The condition rank M = rank H is the same as rankcM = 

rank~H. By [2, theor. 7.2], that forces r �9 H to be closed in u*. By [3, prop. 2.3], 

that in turn guarantees that 3, �9 H = 3, �9 G is closed in O. Also since the variety 

M\H -- qJ �9 H is affine, it follows (e.g. from [3, theor. 3.5]) that M (and so M)  must 

be reductive. 

Now we recall some integration formulas on real reductive algebraic groups. 

Let H be a connected reductive algebraic group def/R, H = H(R) the group of 

real points, and t) its Lie algebra. By a Caftan subgroup C of H we mean the 

centralizer in H of a Cartan subalgebra c of b, C = z , ( c  ). The Weyl group 

W,,c is then N , ( C ) / C  where N , ( C )  is the normalizer of C in H. It is a finite 

group of automorphisms of C If we fix right Haar  measures dh, dc on H, (7, and 

normalize the invariant measure d/~ on C I H  so that 

* Meaning that M contains a Cartan subgroup of H. 
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f .  f(h )dh = fc,. fc [(ch )dcdh, f C @ ( H ) ,  

then we have the Har i sh-Chandra-Weyl  invariant integral formula 

f f(h)dh =w.lcfc fc 'A'c(c)'2f(h-~ch)dhdc' fE~(H').  
H e  \ H  

Here W..c = # (W..c), H~.= {h-'ch" h E H, c E C'} and 

A..c(c) = Co(c) l-I (1 - ~:. (h- ' ) ) ,  

where O denotes a set of positive roots for (11, c ), 

a E O  

and sco, so, denote as usual the lifts to C of the linear forms p, a. Recall also that 

H '  is a disjoint union of the open sets H~- as C varies over a set of 

representatives for the non-conjugate Cartan subgroups. 

Now let C be a Cartan subgroup of H which is contained in M. It is easy to 

check that C is also a Cartan subgroup of M. Fix right Haar  measures dh, dm, dc. 
Choosing as usual invariant measures dh, drfi on CIH, CIM we have the 

formulas 

f f(h)dh= wH"Cfc fc [A'c(C)[2f(h-'ch)dff~de' f@@(H') 
H c  \H 

f f(m)dm =w'Cfc fc IAMc(c)rf(m 'cm)drfidc, f E @ ( M " ) .  
M c. \M 

Here prime (') denotes regularity in H, while double prime (") denotes regularity 

in M. It is clear that elements of M which are H-regular  must also be M-regular ,  

i.e. M A H'C_ M". It is also clear that there is a unique choice of invariant 

measure d~ on UMIG so that 

f(h)dfi= fuM, f ,M f(mg)drhd~,, 

for f ~ C~(G), left UC-invariant,  and compactly supported rood UC. Note that 

we have not assumed G is unimodular. If we denote by 6 the modulus for the 

action of H on U. 

~(h)(  f(huh l)du = (  f(u)du, hCH, f ~ ( U ) ,  
J u  . I t  ! 

then the modular  function of G is ~(g)= 6c(uh)= ~(h). 
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Let rr = Ind~Mycr be as postulated in the s tatement  of the theorem. Let 

f E  @(G)  be of the form f = q~ * q~*, q~ E Co(G). Then by [11, theor. 3.2], we 

have 

7r( f )=  fu~c, 6(g)  ~Tr rum f (g  'umg)y (u)o- (m)dudmd~, .  Tr 

But by strong traceablility and [1, p. 251], we can conclude that this formula 

holds for all [ E  ~ ( G ) .  We proceed to compute  for f E  @(UH~-): 

~" (f) = f~M,~, 6 (•) 'Tr  fur, f (g ~umg)y(u )o-(m )dudmd~, Tr 

(1) = fw,o 6(g)-~fuM f (g- 'umg)y(u)O~(m)dudmd~'  

= w""~fuM,,~, '~(g)-'f,.,,: fc,~ '~x~c(c)'~r(g 'u"-'cmg) 
x "y(u)O,~(c)dudcdrfid~, 

(2) 

(i) 

x y(u)Oo.(c)dudcdrfid~, 

] AM, c(C )12f(g 'm ' ucmg )6(m ) ' 

(h)- ' [  AM.c (c )I2f(h 'uch )y (u )0,, (c )dudcdh. 

We used in step (1) the fact that for g E G, m- -~ fc f (g - ' umg) , y (u )du  is a test 

function on M, and in step (2) that M fixes y. 

We now define a class function on G = UH. Consider first 

: u c  - - ,  w 2o (u . , . s A (c . 

for uc E UC'. (Here IV,, w,,, A,, etc. are abbreviations for WH.c, wM.c, A,,c, etc.) 

Note that y(u �9 s) is well-defined because C stabilizes y. Suppose there is g C G 

such that gucg -~ = ulc~ E UC'. Write g = vh E UH. Then 

u~c~ = vhuch-~v ' 

= v ( h u h  ' )(hch- 'v  'hc- 'h  ')hch ' 

Therefore  c~ = hch-' ,  which implies h ~ NH(C). Also 

ul = v(huh- ' ) (c lv- 'c~ ' ) .  
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Then 

oc(~,c,): w~' (E ~<u,. ,)o.~ <~,. , ) f~ (~ , .  ~)j~) j ~,<~,)l ~ 
/ 

(~, 7' " s '(vhuh 'cry 'c;')O,.(c " hs ) lA: (c  " hs)l:)lA.(c)l 
x 

2 

But since C fixes % we have 

3+ . s  ' ( v ) y  �9 s-'(huh ')3+ . s- ' (c ,v- 'c; ' )  = y �9 s-'(huh '). 

Cont inuing the computa t ion ,  we get 

Oc(u,c,) = wX ( 2  y ( u "  hs)O~(c " hs)lAM (c " hs)[2)[A.(c)l 2 

= Oc(uc), 

after t ransforming s-+ h-~s. Thus if we define 

Oc(g 'ucg)= Oc(uc), 

we get a G-class function on the open set UH~.. 
Now it is a relatively simple matter ,  using the nature of the map 

CIH x C'--+ H~. 

(h, c)-+ h 'ch 

(consult e.g. [8, w 20]), to see that Oc is a cont inuous  function on UH~-. Hence  if 

we are given a function f E @(UH~), the integral 

f u . J ( g )  (g) dg Oc 

is absolutely convergent .  

We now compute  for f E @(UH~.):  

f f (g)Oc(g)dg = f f (uh)Oc(uh)dudh 

w ~' fuc fc , ,  f(uh 'ch )Oc(uh-'ch )IA,(c)[2 dudcdh 

. .f, Jc ._[r I A"(c )[2]:(h 'uch ) (Ew,7,(u " s )O,,(c " s ) W HI W -M l 

x [ A M ( c  �9 s)12)lA,,(c)l-2a(h )-' dudcdh 
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: ' ,  2 (3)  w ; , ' w  ;,' ,c  , .  

x 6(sh)  'dudcdf~ 

(4) =w, , 'w~l~ '~fu  c ~., f ( h - ' u c h ) 7 ( u ) G ( c ) l A M ( c ) l  2 

x 3 (h)  'dudcdff~ 

(II) = f ,c f,,, f(h ' uch)7(u)G(c) lAM(c)126(h)  'dudcdh. 

In s tep (3) we t r a n s f o r m e d  u ~ u �9 s - ' ,  c--~ c �9 s ', and  in s tep (4) we used the 

H - i n v a r i a n c e  of d/~ and the u n i m o d u l a r i t y  of H. 

C o m p a r i n g  (I) and (II)  we conc lude  that  for  f E @(UHk.) ,  

Tr  ~-(f) : J fOe. 

Next  we shall es tabl ish  an auxi l iary  l emma.  

LEMMA 4. Let C be a Cartan subgroup of H. Then either C is H-conjugate to 

another Cartan subgroup which is actually contained in M, or C' N M H = 0 .  

C o m b i n i n g  our  p rev ious  c o m p u t a t i o n s  with this l emma,  we will have de te r -  

mined  the cha rac t e r  of rr comp le t e ly  on the open  dense  set UH'. 

PROOF OF LEMMA 4. Suppose  c ~ C '  C /M H. Then  c E C '  and there  is h E H 

such that  hch I E M. Since c is regular ,  hch ' is also H - r e g u l a r ,  and  so 

M - r e g u l a r .  It fol lows that  the  cen t ra l i ze r  Cl in M of hch ' is a Car t an  s u b g r o u p  

of M, C, = ZM(hch-~). Suppose  we knew that  C~ = Zx(hch  '). Then  C, = 

ZM(hch -1 )  = Z , ( h c h - ' )  = hCh- '  and we would  be  done .  Le t  c, = L A  (C,). Then  

cl is a Ca r t an  suba lgeb ra  of m ,  and  so by  r ank  also of b, Le t  D = Z n ( c a ) .  

Obv ious ly  C1 C D ;  wha t  must  be shown is that  Ca = D. N o w  we may  find a 

Car t an  suba lgeb ra  ca of m such that  ca = r n m .  Then  D = Z . ( r  is a (Zar i sk i )  

connec t ed  complex  Car t an  subg roup  of H. But  L A ( D n M ) =  r  m = r 

T h e r e f o r e  ( D n  M) ~ = D, and  so D = (D fq M) ~  fq M C D .  

It fol lows tha t  D C M .  N o w  one  easi ly checks  tha t  D = Z , (  c a )=  D(R). 

T h e r e f o r e  

C1 = ZM(c~) = M N D  = ( H n M )  n D  

= H A  (M n D) = H A D  = D .  

It r ema ins  finally to show that  the  cha rac t e r  is not  a local ly in tegrab le  funct ion 

on the whole  group .  It is c lear ly  enough  to show 0 I- is not  locally in t eg rab le  on 
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H in a neighborhood of 1. First, let C be a Cartan subgroup of M and H, 

C C_MC_H. Since Cent H\M is not compact, C may be chosen so that 

C/Cent H is not compact. Then a maximal compact subgroup K of H can be 

chosen so that C is invariant under the corresponding Cartan ir~volution. 

Moreover  we can find a (cuspidal) parabolic subgroup of H and a Langland's 

decomposition P = LAN so that C is a fundamental Cartan subgroup of ~, = La 
(i.e. A \C is compact). 

Now let f E ~ ( G )  be non-negative and invariant under inner automorphisms 

of K. Then 

f I . / -  

= w - . ,  

We apply [9, corol. 2, p. 94] to obtain the equation 

(5) IA+(c)f2Sc, f(h-'ch)dh=~p(c)I/2fc\_fN 

where 

f(~ 'cn~)dnd~ c E C', 

A+(c)=det(1-Ad(c))[l~/~, b=LA(L).  

where 5r = the positive roots of (lit, c) and 3 - =  the positive roots of ( [ ,  c) 

which are not identically zero on the split part a of r The point is that by the 

non-compactness of M\H, we can find a E 3- - 5 e. This can be seen as follows: 

First it is enough to assume b is simple. Then one checks easily that the 

or thocomplement  of nl (wrt the Killing form) in b actually generates t). Thus the 

set of roots of (I), c) which are not roots of (m, c ) spans the set of all roots of 

(D, r On the other  hand 3- C 5e would say that every root of ([), c ) which is not 

F =  
I~a Esr O/ 

Now let ~ be a neighborhood of 1 in G on which f (x)~ 1. Then there must 

exist a neighborhood ~ of 1 in C and a positive constant e such that the right 

side of (5) is larger than e whenever c ~ C'  M ~ Th0s it is enough to prove that 

] 01 ]An 12 I A+ [-,/2 is not locally integrable on C around 1. From an examination of 

0c we see that is tantamount to showing ]A+I-'2IAM ]is not locally integrable on 

C around 1. Reducing in the usual way to the Lie algebra b, we find we must 

show non-local integrability on b around 0 of the function 
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a root of (m, c) must vanish on a. By the preceding remark on the span, all 

roots of (D, c) would then vanish on a. This can happen only if a-= {0}. That 

contradicts the fact that C/Cent  H is non-compact. 

Thus letting a E 3- - b ~ we can find a compact neighborhood II of 0 in D and a 

positive constant k such that 

IF(Y)I>-_kl (Y)l -=, Y e a ,  

where m = 1 or 2 according as ~ takes only real values on c or not. Our result 

follows finally from the fact that neither dt/t nor dxdy/(x2+ y2) is locally 

integrable around 0 in R or R 2 respectively. 

REMARKS. 1) The proof of non-local integrability for the special case that M 

is a maximally split Cartan subgroup of H was communicated to me in a letter by 

Harish-Chandra. The general proof given above is a natural generalization of 

this argument. I wish to thank Joe Wolf for pointing out to me why 3 - ~ must 

be non-empty, and for helping me over another small, but annoying blind spot I 

encountered while writing down the proof. 

2) In the case that M contains only compact (rood Cent H )  Cartan subgroups 

of H, that is, when Cent H \ M  is compact, I have not been able to settle whether 

the character is locally integrable or not. 

3) According to [14, theor. 3.4], there is a Zariski-open subset ff of D on 

which the function 3, ---> {conjugacy class of H,} is finite-valued. In many 

instances these H,  are reductive (e.g. if the generic orbits are closed). If in 

addition G is unimodular, then it follows from Corollary 2 and [11, theor. 10.2] 

that ~" = IndgH,7~r is strongly traceable for "most"  y ~ ff and o" ~/-t~. (I suspect 

that all the irreducible representations sitting over a closed orbit are at least 

traceable, but I have not proven it.) In case rank H,  = rank H, the distribution 

character 0~ is completely determined by Theorem 3 on the open set UH'. 

Unfortunately,  the proof gives no insight as to what 0, looks like on the singular 

set U ( H - H ' ) .  I hope to supply some in the next paper. 

We close by citing some examples. 

EXAMPLE. 1) Let G = UH, U = b = LA(H) ,  with H acting on U by the 

adjoint action. If B denotes the Killing form on D, the characters of U are given 

by 3'~(u) = e 'Bt'~, u, v E b. Since H leaves B invariant, we have H,o = Ho. The 

conditions of Theorem 3 will be satisfied, for example if v is a regular element of 

I?. In that case M = Hv is a Cartan subgroup of H. It was this example that 

inspired Theorem 3. 

2) For an odd integer n > 1, let U = C" carry a non-degenerate quadratic form 
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q (with in teg ra l  coeff icients) .  If H d e n o t e s  the  s u b g r o u p  of S L ( n , C )  tha t  

p r e se rves  q, t h e n  H ~ S O ( n , C )  a n d  G = U H  is an a lgebra i c  g roup .  If G = U I t  is 

a real  fo rm a n d  y ~ ( u ) =  e ~q~"'"), t hen  H~, = Hr. W h e n  v is res t r i c ted  to those  

e l e m e n t s  for which  q(v ,  v)  ~ O, the  c o n d i t i o n s  of T h e o r e m  3 are  fulfi l led.  In this  

case the  g r o u p  M = Hv is a real  fo rm of S O ( n  - 1 ,C)  which d e p e n d s  on  the  

s i gna tu r e  of q ]u a n d  the  sign of q ( v , v ) .  

3) M o r e  e x a m p l e s - - i n  which  H = Sp (n, C)  or  ce r t a in  e x c e p t i o n a l  g r o u p s - -  

can  be  g l e a n e d  f rom the  tab les  in [7]. 
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